Rows 1 thru 261 on this page reproduce the math examples from
https://en.wikipedia.org/wiki/Help:Displaying_a_formula
A few of the functions on this page require Temml’s texvc extension.
Source | Temml | |
---|---|---|
1 | \alpha | |
2 | f(x) = x^2 | |
3 | \{1,e,\pi\} | |
4 | |z + 1| \leq 2 | |
5 | \# \$ \% \wedge \& \_ \{ \} \sim \backslash | |
Accents | ||
6 | \dot{a}, \ddot{a}, \acute{a}, \grave{a} | |
7 | \dot{a}, \ddot{a}, \acute{a}, \grave{a} | |
8 | \check{a}, \breve{a}, \tilde{a}, \bar{a} | |
9 | \hat{a}, \widehat{a}, \vec{a} | |
Functions | ||
10 | \exp_a b = a^b, \exp b = e^b, 10^m | |
11 | \ln c, \lg d = \log e, \log_{10} f | |
12 | \sin a, \cos b, \tan c, \cot d, \sec e, \csc f | |
13 | \arcsin h, \arccos i, \arctan j | |
14 | \sinh k, \cosh l, \tanh m, \coth n | |
15 | \operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n | |
16 | \sgn r, \left\vert s \right\vert | |
17 | \min(x,y), \max(x,y) | |
Bounds | ||
18 | \min x, \max y, \inf s, \sup t | |
19 | \lim u, \liminf v, \limsup w | |
20 | \dim p, \deg q, \det m, \ker\phi | |
Projections | ||
21 | \Pr j, \hom l, \lVert z \rVert, \arg z | |
Differentials and derivatives | ||
22 | dt, \mathrm{d}t, \partial t, \nabla\psi | |
23 | dy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\partial^2} {\partial x_1\partial x_2}y | |
24 | \prime, \backprime, f^\prime, f', f'', f^{(3)}, \dot y, \ddot y | |
Letter-like symbols or constants | ||
25 | \infty, \aleph, \complement,\backepsilon, \eth, \Finv, \hbar | |
26 | \Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS, \S, \P, \AA | |
Modular arithmetic | ||
27 | s_k \equiv 0 \pmod{m} | |
28 | a \bmod b | |
29 | \gcd(m, n), \operatorname{lcm}(m, n) | |
30 | \mid, \nmid, \shortmid, \nshortmid | |
Radicals | ||
31 | \surd, \sqrt{2}, \sqrt[n]{2}, \sqrt[3]{\frac{x^3+y^3}{2}} | |
Operators | ||
32 | +, -, \pm, \mp, \dotplus | |
33 | \times, \div, \divideontimes, /,\backslash | |
34 | \cdot, * \ast, \star, \circ, \bullet | |
35 | \boxplus, \boxminus, \boxtimes, \boxdot | |
36 | \oplus, \ominus, \otimes, \oslash, \odot | |
37 | \circleddash, \circledcirc, \circledast | |
38 | \bigoplus, \bigotimes, \bigodot | |
Sets | ||
39 | { }, \O \empty \emptyset, \varnothing | |
40 | \in, \notin \not\in, \ni, \not\ni | |
41 | \cap, \Cap, \sqcap, \bigcap | |
42 | \cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus | |
43 | \setminus, \smallsetminus, \times | |
44 | \subset, \Subset, \sqsubset | |
45 | \supset, \Supset, \sqsupset | |
46 | \subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq | |
47 | \supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq | |
48 | \subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq | |
49 | \supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq | |
Relations | ||
50 | =, \ne, \neq, \equiv, \not\equiv | |
51 | \doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=}, := | |
52 | \sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong | |
53 | \approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto | |
54 | <, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot | |
55 | \le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq | |
56 | \ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq | |
57 | \lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless | |
58 | \leqslant, \nleqslant, \eqslantless | |
59 | \geqslant, \ngeqslant, \eqslantgtr | |
60 | \lesssim, \lnsim, \lessapprox, \lnapprox | |
61 | \gtrsim, \gnsim, \gtrapprox, \gnapprox | |
62 | \prec, \nprec, \preceq, \npreceq,\precneqq | |
63 | \succ, \nsucc, \succeq, \nsucceq,\succneqq | |
64 | \preccurlyeq, \curlyeqprec | |
65 | \succcurlyeq, \curlyeqsucc | |
66 | \precsim, \precnsim, \precapprox, \precnapprox | |
67 | \succsim, \succnsim, \succapprox, \succnapprox | |
Geometric | ||
68 | \parallel, \nparallel, \shortparallel, \nshortparallel | |
69 | \perp, \angle, \sphericalangle, \measuredangle, 45^\circ | |
70 | \Box, \square, \blacksquare, \diamond, \Diamond, \lozenge, \blacklozenge,\bigstar | |
71 | \bigcirc, \triangle, \bigtriangleup, \bigtriangledown | |
72 | \vartriangle, \triangledown | |
73 | \blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright | |
Logic | ||
74 | \forall, \exists, \nexists | |
75 | \therefore, \because, \And | |
76 | \lor \vee, \curlyvee, \bigvee | |
77 | \land \wedge, \curlywedge, \bigwedge | |
78 | \bar{q}, \bar{abc}, \overline{q}, \overline{abc},\\ \lnot \neg, \not\operatorname{R},\bot,\top | |
79 | \vdash \dashv, \vDash, \Vdash, \models | |
80 | \Vvdash \nvdash \nVdash \nvDash \nVDash | |
81 | \ulcorner \urcorner \llcorner \lrcorner | |
Arrows | ||
82 | \Rrightarrow, \Lleftarrow | |
83 | \Rightarrow, \nRightarrow, \Longrightarrow, \implies | |
84 | \Leftarrow, \nLeftarrow, \Longleftarrow | |
85 | \Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow, \iff | |
86 | \Uparrow, \Downarrow, \Updownarrow | |
87 | \rightarrow \to, \nrightarrow, \longrightarrow | |
88 | \leftarrow \gets, \nleftarrow, \longleftarrow | |
89 | \leftrightarrow, \nleftrightarrow, \longleftrightarrow | |
90 | \uparrow, \downarrow, \updownarrow | |
91 | \nearrow, \swarrow, \nwarrow, \searrow | |
92 | \mapsto, \longmapsto | |
93 | \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons | |
94 | \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright | |
95 | \curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft | |
96 | \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow | |
Special | ||
97 | \amalg \P \S %\dagger\ddagger\ldots\cdots | |
98 | \smile \frown \wr \triangleleft \triangleright | |
99 | \diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp | |
Unsorted | ||
100 | \diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes | |
101 | \eqcirc \circeq \triangleq \bumpeq\Bumpeq \doteqdot \risingdotseq \fallingdotseq | |
102 | \intercal \barwedge \veebar \doublebarwedge \between \pitchfork | |
103 | \vartriangleleft \ntriangleleft \vartriangleright \ntriangleright | |
104 | \trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq |
Larger expressions | ||
---|---|---|
Source | Temml | |
105 | a^2, a^{x+3} | |
106 | a_2 | |
107 | 10^{30} a^{2+2} a_{i,j} b_{f'} | |
108 | x_2^3 {x_2}^3 | |
109 | 10^{10^{8}} | |
110 | \sideset{_1^2}{_3^4}\prod_a^b {}_1^2\!\Omega_3^4 | |
111 | \overset{\alpha}{\omega} \underset{\alpha}{\omega} \overset{\alpha}{\underset{\gamma}{\omega}} \stackrel{\alpha}{\omega} | |
112 | x', y'', f', f'' x^\prime, y^{\prime\prime} | |
113 | \dot{x}, \ddot{x} | |
114 | \hat a \ \bar b \ \vec c \overrightarrow{a b} \ \overleftarrow{c d} \widehat{d e f} \overline{g h i} \ \underline{j k l} | |
115 | \overset{\frown} {AB} | |
116 | A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C | |
117 | \overbrace{ 1+2+\cdots+100 }^{5050} | |
118 | \underbrace{ a+b+\cdots+z }_{26} | |
119 | \sum_{k=1}^N k^2 | |
120 | \textstyle \sum_{k=1}^N k^2 | |
121 | \frac{\sum_{k=1}^N k^2}{a} | |
122 | \frac{\sum\limits^{^N}_{k=1} k^2}{a} | |
123 | \prod_{i=1}^N x_i | |
124 | \textstyle \prod_{i=1}^N x_i | |
125 | \coprod_{i=1}^N x_i | |
126 | \textstyle \coprod_{i=1}^N x_i | |
127 | \lim_{n \to \infty}x_n | |
128 | \textstyle \lim_{n \to \infty}x_n | |
129 | \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx | |
130 | \int_{1}^{3}\frac{e^3/x}{x^2}\, dx | |
131 | \textstyle \int\limits_{-N}^{N} e^x dx | |
132 | \textstyle \int_{-N}^{N} e^x dx | |
133 | \iint\limits_D dx\,dy | |
134 | \iiint\limits_E dx\,dy\,dz | |
135 | \iiiint\limits_F dx\,dy\,dz\,dt | |
136 | \int_{(x,y)\in C} x^3\, dx + 4y^2\, dy | |
137 | \oint_{(x,y)\in C} x^3\, dx + 4y^2\, dy | |
138 | \bigcap_{i=1}^n E_i | |
139 | \bigcup_{i=1}^n E_i | |
Fractions, matrices, multiline | ||
140 | \frac{2}{4}=0.5 or {2 \over 4}=0.5 | or |
141 | \tfrac{2}{4} = 0.5 | |
142 | \dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a | |
143 | \cfrac{2}{c +\cfrac{2}{d +\cfrac{2}{4}}} = a | |
144 | \cfrac{x}{1 + \cfrac{\cancel{y}} {\cancel{y}}} = \cfrac{x}{2} | |
145 | \binom{n}{k} | |
146 | \tbinom{n}{k} | |
147 | \dbinom{n}{k} | |
148 | \begin{matrix} x & y \\ z & v \end{matrix} | |
149 | \begin{vmatrix} x & y \\ z & v \end{vmatrix} | |
150 | \begin{Vmatrix} x & y \\ z & v \end{Vmatrix} | |
151 | \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} | |
152 | \begin{Bmatrix} x & y \\ z & v \end{Bmatrix} | |
153 | \begin{pmatrix} x & y \\ z & v \end{pmatrix} | |
154 | \bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) | |
155 | f(n) = \begin{cases} n/2, & \text{if }n\text{ is even} \\ 3n+1, & \text{if }n\text{ is odd} \end{cases} | |
156 | \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} | |
157 | \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} | |
158 | \begin{alignat}{2} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{alignat} | |
159 | \begin{align} f(a,b) & = (a+b)^2 && = (a+b)(a+b) \\ & = a^2+ab+ba+b^2 && = a^2+2ab+b^2 \\ \end{align} | |
159 | \begin{alignat}{3} f(a,b) & = (a+b)^2 && = (a+b)(a+b) \\ & = a^2+ab+ba+b^2 && = a^2+2ab+b^2 \\ \end{alignat} | |
160 | \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} | |
161 | \begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} | |
162 | \begin{alignat}{4} F:\; && C(X) && \;\to\; & C(X) \\ && g && \;\mapsto\; & g^2 \end{alignat} | |
163 | \begin{alignat}{4} F:\; && C(X) && \;\to\; && C(X) \\ && g && \;\mapsto\; && g^2 \end{alignat} | |
164 | f(x) \,\! =\sum_{n=0}^\infty a_n x^n = a_0+a_1x+a_2x^2+\cdots | |
165 | \begin{array}{|c|c|c|} a & b & S \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array} |
Delimiters | ||
---|---|---|
166 | ( \frac{1}{2} )^n | |
167 | \left ( \frac{1}{2} \right )^n | |
168 | \left ( \frac{a}{b} \right ) | |
169 | \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack | |
170 | \left { \frac{a}{b} \right } \quad \left \lbrace \frac{a}{b} \right \rbrace | |
171 | \left \langle \frac{a}{b} \right \rangle | |
172 | \left | \frac{a}{b} \right \vert \quad \left \Vert \frac{c}{d} \right | | |
173 | \left \lfloor \frac{a}{b} \right \rfloor \quad \left \lceil \frac{c}{d} \right \rceil | |
174 | \left / \frac{a}{b} \right \backslash | |
175 | \left\uparrow\frac{a}{b}\right\downarrow\; \left\Uparrow\frac{a}{b}\right\Downarrow\; \left \updownarrow \frac{a}{b} \right \Updownarrow | |
176 | \left [ 0,1 \right ) \left \langle \psi \right | | |
177 | \left . \frac{A}{B} \right } \to X | |
178 | ( \bigl( \Bigl( \biggl( \Biggl( \dots \Biggr] \biggr] \Bigr] \bigr] ] | |
179 | { \bigl{ \Bigl{ \biggl{ \Biggl{ \dots \Biggr\rangle \biggr\rangle \Bigr\rangle \bigr\rangle \rangle | |
180 | | \big| \Big| \bigg| \Bigg| \dots \Bigg| \bigg| \Big| \big| | | |
181 | \lfloor \bigl\lfloor \Bigl\lfloor \biggl\lfloor \Biggl\lfloor \dots \Biggr\rceil \biggr\rceil \Bigr\rceil \bigr\rceil \rceil | |
182 | \uparrow \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow \Downarrow | |
183 | \updownarrow\big\updownarrow\Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big \Updownarrow \big\Updownarrow \Updownarrow | |
184 | / \big/ \Big/ \bigg/ \Bigg/ \dots \Bigg\backslash \bigg\backslash \Big \backslash \big\backslash \backslash | |
Greek Alphabet | ||
185 | \Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta | |
186 | \Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi | |
187 | \Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega | |
188 | \alpha \beta \gamma \delta \epsilon \zeta \eta \theta | |
189 | \iota \kappa \lambda \mu \nu \xi \omicron \pi | |
190 | \rho \sigma \tau \upsilon \phi \chi \psi \omega | |
191 | \varGamma \varDelta \varTheta \varLambda \varXi \varPi \varSigma \varPhi \varUpsilon \varOmega | |
192 | \varepsilon \digamma \varkappa \varpi \varrho \varsigma \vartheta \varphi | |
Hebrew symbols | ||
193 | \aleph \beth \gimel \daleth | |
Blackboard bold | ||
194 | \mathbb{ABCDEFGHI} \mathbb{JKLMNOPQR} \mathbb{STUVWXYZ} | |
Boldface | ||
195 | \mathbf{ABCDEFGHI} \mathbf{JKLMNOPQR} \mathbf{STUVWXYZ} \mathbf{abcdefghijklm} \mathbf{nopqrstuvwxyz} \mathbf{0123456789} | |
Boldface Greek | ||
196 | \boldsymbol{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta} | |
197 | \boldsymbol{\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi} | |
198 | \boldsymbol{\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega} | |
199 | \boldsymbol{\alpha \beta \gamma \delta \epsilon \zeta \eta \theta} | |
200 | \boldsymbol{\iota \kappa \lambda \mu \nu \xi \omicron \pi} | |
201 | \boldsymbol{\rho \sigma \tau \upsilon \phi \chi \psi \omega} | |
202 | \boldsymbol{\varepsilon\digamma\varkappa \varpi} | |
203 | \boldsymbol{\varrho\varsigma\vartheta\varphi} | |
Italics | ||
204 | \mathit{0123456789} | |
Greek Italics | ||
205 | \mathit{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta} | |
206 | \mathit{\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi} | |
207 | \mathit{\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega} | |
Greek uppercase boldface italics | ||
208 | \boldsymbol{\varGamma \varDelta \varTheta \varLambda} | |
209 | \boldsymbol{\varXi \varPi \varSigma \varUpsilon \varOmega} | |
Roman typeface | ||
210 | \mathrm{ABCDEFGHI} \mathrm{JKLMNOPQR} \mathrm{STUVWXYZ} \mathrm{abcdefghijklm} \mathrm{nopqrstuvwxyz} \mathrm{0123456789} | |
Sans serif | ||
211 | \mathsf{ABCDEFGHI} \mathsf{JKLMNOPQR} \mathsf{STUVWXYZ} \mathsf{abcdefghijklm} \mathsf{nopqrstuvwxyz} \mathsf{0123456789} | |
Sans serif Greek | ||
212 | \mathsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta} | |
213 | \mathsf{\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi} | |
214 | \mathsf{\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega} |
Unicode has special code points for bold Greek sans-serif, but no code points for
regular-weight Greek sans-serif. I know of no servable math font that has glyphs
for regular-weight Greek sans-serif. Consequently, these bold Greek sans-serif
glyphs are the best approximation I can make to sans-serif Greek.
Calligraphy | ||
215 | \mathcal{ABCDEFGHI} \mathcal{JKLMNOPQR} \mathcal{STUVWXYZ} \mathcal{abcdefghi} \mathcal{jklmnopqr} \mathcal{stuvwxyz} | |
Fraktur | ||
216 | \mathfrak{ABCDEFGHI} \mathfrak{JKLMNOPQR} \mathfrak{STUVWXYZ} \mathfrak{abcdefghi} \mathfrak{jklmnopqr} \mathfrak{stuvwxyz} | |
Scriptstyle text | ||
217 | {\scriptstyle\text{abcdefghijklm}} | |
Mixed text faces | ||
218 | x y z | |
219 | \text{x y z} | |
220 | \text{if} n \text{is even} | |
221 | \text{if }n\text{ is even} | |
222 | \text{if}~n\ \text{is even} | |
Color | ||
223 | {\color{Blue}x^2}+{\color{Orange}2x}- {\color{LimeGreen}1} | |
224 | x_{1,2}=\frac{{\color{Blue}-b}\pm \sqrt{\color{Red}b^2-4ac}}{\color{Green}2a } | |
225 | {\color{Blue}x^2}+{\color{Orange}2x}- {\color{LimeGreen}1} | |
226 | \color{Blue}x^2\color{Black}+\color{Orange} 2x\color{Black}-\color{LimeGreen}1 | |
227 | \color{Blue}{x^2}+\color{Orange}{2x}- \color{LimeGreen}{1} | |
228 | \definecolor{myorange}{rgb}{1,0.65,0.4} \color{myorange}e^{i \pi}\color{Black} + 1= 0 |
For color names, see the color section in the Temml function support page.
Spacing | ||
---|---|---|
229 | a \qquad b a \quad b a\ b a \text{ } b a\;b a\,b ab a b \mathit{ab} a\!b | |
230 | | \uparrow \rangle | |
231 | \left| \uparrow \right\rangle | |
232 | | {\uparrow} \rangle | |
233 | | \mathord\uparrow \rangle | |
Temml replacements for wiki workarounds | ||
234 | \oiint\limits_D dx\,dy \oiiint\limits_E dx\,dy\,dz | |
234 | \wideparen{AB} | |
235 | \dddot{x} | |
236 | \operatorname*{median}_ {j\,\ne\,i} X_{i,j} | |
237 | \sout{q} | |
238 | \mathrlap{\,/}{=} | |
239 | \text{\textsf{textual description}} | |
240 | α π |
mhchem
examples are displayed on their own test page.
Examples of implemented TeX formulas | ||
---|---|---|
241 | ax^2 + bx + c = 0 | |
242 | x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} | |
243 | \left( \frac{\left(3-x\right) \times 2}{3-x} \right) | |
244 | S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2} | |
245 | \int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy | |
246 | \int_e^{\infty}\frac {1}{t(\ln t)^2}dt = \left. \frac{-1}{\ln t}\right\vert_e^\infty = 1 | |
247 | \det(\mathsf{A}-\lambda\mathsf{I}) = 0 | |
248 | \sum_{i=0}^{n-1} i | |
249 | \sum_{m=1}^\infty\sum_{n=1}^\infty \frac{m^2 n}{3^m\left(m 3^n + n 3^m\right)} | |
250 | u'' + p(x)u' + q(x)u=f(x),\quad x>a | |
251 | |\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z) | |
252 | \lim_{z\to z_0} f(z)=f(z_0) | |
253 | \phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left [ R^2\frac{\partial D_n(R)} {\partial R} \right ] \,dR | |
254 | \phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3}, \quad\frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0} | |
255 | f(x) = \begin{cases} 1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \text{otherwise} \end{cases} | |
256 | {}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a1)_n\cdots(ap)_n} {(c_1)_n\cdots(c_q)_n}\frac{z^n}{n!} | |
258 | \frac{a}{b}\ \tfrac{a}{b} | |
259 | S=dD\sin\alpha | |
260 | V = \frac{1}{6} \pi h \left [ 3 \left ( r1^2 + r2^2 \right ) + h^2 \right ] | |
261 | \begin{align} u & = \tfrac{1}{\sqrt{2}}(x+y) \qquad & x &= \tfrac{1}{\sqrt{2}}(u+v) \\[0.6ex] v & = \tfrac{1}{\sqrt{2}}(x-y) \qquad & y &= \tfrac{1}{\sqrt{2}}(u-v) \end{align} |
That concludes the tests from Wikipedia. Now a few more tests.
Linear Logic | ||
---|---|---|
262 | A \with B \parr C | |
263 | a \coh \oc b \incoh \wn c \scoh d \sincoh e | |
264 | a \Perp \shpos b \multimapinv \shneg c |
Nested font size | ||
---|---|---|
265 | \mathrm{f{\large f{\normalsize f{\tiny f}}}} |
The next line tests the length of an extensible arrow. Since Firefox does not
support the minsize
attribute, Temml has a workaround. The middle arrow
should be as long at the bar between C & D.
266 | A \rightarrow B \xrightarrow{i} C \rule[0.3em]{1.75em}{0.05em} D |
The next line tests the fix for Temml issue #21. Firefox would ordinarily omit
the dot on the i below. It's fixed by a Temml CSS rule, so it renders properly.
267 | \widetilde{U_i} |