Wiki Test

Rows 1 thru 261 on this page reproduce the math examples from
https://en.wikipedia.org/wiki/Help:Displaying_a_formula

A few of the functions on this page require Temml’s texvc extension.


Source Temml
1\alphaα
2f(x) = x^2f(x)=x2
3\{1,e,\pi\}{1,e,π}
4|z + 1| \leq 2|z+1|2
5\# \$ \% \wedge \& \_ \{ \} \sim
\backslash
#$%&_{}\
Accents
6\dot{a}, \ddot{a}, \acute{a}, \grave{a}a˙,a¨,aˊ,a`
7\dot{a}, \ddot{a}, \acute{a}, \grave{a}a˙,a¨,aˊ,a`
8\check{a}, \breve{a}, \tilde{a}, \bar{a}aˇ,a˘,a~,a
9\hat{a}, \widehat{a}, \vec{a}a^,a^,a
Functions
10\exp_a b = a^b, \exp b = e^b, 10^mexpab=ab,expb=eb,10m
11\ln c, \lg d = \log e, \log_{10} flnc,lgd=loge,log10f
12\sin a, \cos b, \tan c, \cot d, \sec e,
\csc f
sina,cosb,tanc,cotd,sece,cscf
13\arcsin h, \arccos i, \arctan jarcsinh,arccosi,arctanj
14\sinh k, \cosh l, \tanh m, \coth nsinhk,coshl,tanhm,cothn
15\operatorname{sh}k, \operatorname{ch}l,
\operatorname{th}m, \operatorname{coth}n
shk,chl,thm,cothn
16\sgn r, \left\vert s \right\vertsgnr,|s|
17\min(x,y), \max(x,y)min(x,y),max(x,y)
Bounds
18\min x, \max y, \inf s, \sup tminx,maxy,infs,supt
19\lim u, \liminf v, \limsup wlimu,lim infv,lim supw
20\dim p, \deg q, \det m, \ker\phidimp,degq,detm,kerϕ
Projections
21\Pr j, \hom l, \lVert z \rVert, \arg zPrj,homl,z,argz
Differentials and derivatives
22dt, \mathrm{d}t, \partial t, \nabla\psidt,dt,t,ψ
23dy/dx, \mathrm{d}y/\mathrm{d}x,
\frac{dy}{dx},
\frac{\mathrm{d}y}{\mathrm{d}x},
\frac{\partial^2}
{\partial x_1\partial x_2}y
dy/dx,dy/dx,dydx,dydx,2x1x2y
24\prime, \backprime, f^\prime, f', f'',
f^{(3)}, \dot y, \ddot y
,,f,f,f,f(3),y˙,y¨
Letter-like symbols or constants
25\infty, \aleph, \complement,\backepsilon,
\eth, \Finv, \hbar
,,,,ð,,
26\Im, \imath, \jmath, \Bbbk, \ell, \mho,
\wp, \Re, \circledS, \S, \P, \AA
,ı,ȷ,𝕜,,,,,,§,,A˚
Modular arithmetic
27s_k \equiv 0 \pmod{m}sk0(modm)
28a \bmod bamodb
29\gcd(m, n), \operatorname{lcm}(m, n)gcd(m,n),lcm(m,n)
30\mid, \nmid, \shortmid, \nshortmid|,,,
Radicals
31\surd, \sqrt{2}, \sqrt[n]{2},
\sqrt[3]{\frac{x^3+y^3}{2}}
|,2,2n,x3+y323
Operators
32+, -, \pm, \mp, \dotplus+,,±,,
33\times, \div, \divideontimes, /,\backslash×,÷,,/,\
34\cdot, * \ast, \star, \circ, \bullet,*,,,
35\boxplus, \boxminus, \boxtimes, \boxdot,,,
36\oplus, \ominus, \otimes, \oslash, \odot⊕︎,,,,
37\circleddash, \circledcirc, \circledast,,
38\bigoplus, \bigotimes, \bigodot,,
Sets
39{ }, \O \empty \emptyset, \varnothing{},Ø,
40\in, \notin \not\in, \ni, \not\ni,∉,,∌
41\cap, \Cap, \sqcap, \bigcap,,,
42\cup, \Cup, \sqcup, \bigcup, \bigsqcup,
\uplus, \biguplus
,,,,,,
43\setminus, \smallsetminus, \times,,×
44\subset, \Subset, \sqsubset,,
45\supset, \Supset, \sqsupset,,
46\subseteq, \nsubseteq, \subsetneq,
\varsubsetneq, \sqsubseteq
,,,⊊︀,
47\supseteq, \nsupseteq, \supsetneq,
\varsupsetneq, \sqsupseteq
,,,,
48\subseteqq, \nsubseteqq, \subsetneqq,
\varsubsetneqq
,,,⫋︀
49\supseteqq, \nsupseteqq, \supsetneqq,
\varsupsetneqq
,,,⫌︀
Relations
50=, \ne, \neq, \equiv, \not\equiv=,,,,≢
51\doteq, \doteqdot,
\overset{\underset{\mathrm{def}}{}}{=}, :=
,,=def,:=
52\sim, \nsim, \backsim, \thicksim, \simeq,
\backsimeq, \eqsim, \cong, \ncong
,,,,,,,,
53\approx, \thickapprox, \approxeq, \asymp,
\propto, \varpropto
,,,,,
54<, \nless, \ll, \not\ll, \lll, \not\lll,
\lessdot
<,,,≪̸,,⋘̸,
55\le, \leq, \lneq, \leqq, \nleq, \nleqq,
\lneqq, \lvertneqq
,,,,,,,≨︀
56\ge, \geq, \gneq, \geqq, \ngeq, \ngeqq,
\gneqq, \gvertneqq
,,,,,,,≩︀
57\lessgtr, \lesseqgtr, \lesseqqgtr,
\gtrless, \gtreqless, \gtreqqless
,,,,,
58\leqslant, \nleqslant, \eqslantless,,
59\geqslant, \ngeqslant, \eqslantgtr,,
60\lesssim, \lnsim, \lessapprox, \lnapprox,,,
61\gtrsim, \gnsim, \gtrapprox, \gnapprox,,,
62\prec, \nprec, \preceq, \npreceq,\precneqq,,,,
63\succ, \nsucc, \succeq, \nsucceq,\succneqq,,,,
64\preccurlyeq, \curlyeqprec,
65\succcurlyeq, \curlyeqsucc,
66\precsim, \precnsim, \precapprox,
\precnapprox
,,,
67\succsim, \succnsim, \succapprox,
\succnapprox
,,,
Geometric
68\parallel, \nparallel, \shortparallel,
\nshortparallel
,,,
69\perp, \angle, \sphericalangle,
\measuredangle, 45^\circ
,,,,45
70\Box, \square, \blacksquare, \diamond,
\Diamond, \lozenge, \blacklozenge,\bigstar
,,,,,,,
71\bigcirc, \triangle, \bigtriangleup,
\bigtriangledown
,,,
72\vartriangle, \triangledown,
73\blacktriangle, \blacktriangledown,
\blacktriangleleft, \blacktriangleright
,,,
Logic
74\forall, \exists, \nexists,,
75\therefore, \because, \And,,&
76\lor \vee, \curlyvee, \bigvee,,
77\land \wedge, \curlywedge, \bigwedge,,
78\bar{q}, \bar{abc}, \overline{q},
\overline{abc},\\
\lnot \neg, \not\operatorname{R},\bot,\top
q,abc,q,abc,¬¬,̸R,,
79\vdash \dashv, \vDash, \Vdash, \models,,,
80\Vvdash \nvdash \nVdash \nvDash \nVDash
81\ulcorner \urcorner \llcorner \lrcorner
Arrows
82\Rrightarrow, \Lleftarrow,
83\Rightarrow, \nRightarrow,
\Longrightarrow, \implies
,,,
84\Leftarrow, \nLeftarrow, \Longleftarrow,,
85\Leftrightarrow, \nLeftrightarrow,
\Longleftrightarrow, \iff
,,,
86\Uparrow, \Downarrow, \Updownarrow,,
87\rightarrow \to, \nrightarrow,
\longrightarrow
,,
88\leftarrow \gets, \nleftarrow,
\longleftarrow
,,
89\leftrightarrow, \nleftrightarrow,
\longleftrightarrow
,,
90\uparrow, \downarrow, \updownarrow,,
91\nearrow, \swarrow, \nwarrow, \searrow,,,
92\mapsto, \longmapsto,
93\rightharpoonup \rightharpoondown
\leftharpoonup \leftharpoondown
\upharpoonleft \upharpoonright
\downharpoonleft \downharpoonright
\rightleftharpoons \leftrightharpoons
94\curvearrowleft \circlearrowleft \Lsh
\upuparrows \rightrightarrows
\rightleftarrows \rightarrowtail
\looparrowright
95\curvearrowright \circlearrowright \Rsh
\downdownarrows \leftleftarrows
\leftrightarrows \leftarrowtail
\looparrowleft
96\hookrightarrow \hookleftarrow \multimap
\leftrightsquigarrow \rightsquigarrow
\twoheadrightarrow \twoheadleftarrow
Special
97\amalg \P \S %\dagger\ddagger\ldots\cdots⨿§%
98\smile \frown \wr \triangleleft
\triangleright
99\diamondsuit, \heartsuit, \clubsuit,
\spadesuit, \Game, \flat, \natural, \sharp
,,,,,,,
Unsorted
100\diagup \diagdown \centerdot \ltimes
\rtimes \leftthreetimes \rightthreetimes
101\eqcirc \circeq \triangleq \bumpeq\Bumpeq
\doteqdot \risingdotseq \fallingdotseq
102\intercal \barwedge \veebar
\doublebarwedge \between \pitchfork
103\vartriangleleft \ntriangleleft
\vartriangleright \ntriangleright
104\trianglelefteq \ntrianglelefteq
\trianglerighteq \ntrianglerighteq

Larger expressions

Source Temml
105a^2, a^{x+3}a2,ax+3
106a_2a2
10710^{30} a^{2+2}
a_{i,j} b_{f'}
1030a2+2ai,jbf
108x_2^3
{x_2}^3
x23x23
10910^{10^{8}}10108
110\sideset{_1^2}{_3^4}\prod_a^b
{}_1^2\!\Omega_3^4

3412ab

12Ω34

111\overset{\alpha}{\omega}
\underset{\alpha}{\omega}
\overset{\alpha}{\underset{\gamma}{\omega}}
\stackrel{\alpha}{\omega}
ωαωαωγαωα
112x', y'', f', f''
x^\prime, y^{\prime\prime}
x,y,f,fx,y
113\dot{x}, \ddot{x}x˙,x¨
114\hat a \ \bar b \ \vec c
\overrightarrow{a b} \ \overleftarrow{c d}
\widehat{d e f}
\overline{g h i} \ \underline{j k l}
a^ b cab cddef^ghi jkl
115\overset{\frown} {AB}A
116A \xleftarrow{n+\mu-1} B
\xrightarrow[T]{n\pm i-1} C
An+μ1BTn±i1C
117\overbrace{ 1+2+\cdots+100 }^{5050}1+2++1005050
118\underbrace{ a+b+\cdots+z }_{26}a+b++z26
119\sum_{k=1}^N k^2

k=1Nk2

120\textstyle \sum_{k=1}^N k^2

k=1Nk2

121\frac{\sum_{k=1}^N k^2}{a}

k=1Nk2a

122\frac{\sum\limits^{^N}_{k=1} k^2}{a}

k=1Nk2a

123\prod_{i=1}^N x_i

i=1Nxi

124\textstyle \prod_{i=1}^N x_i

i=1Nxi

125\coprod_{i=1}^N x_i

i=1Nxi

126\textstyle \coprod_{i=1}^N x_i

i=1Nxi

127\lim_{n \to \infty}x_n

limnxn

128\textstyle \lim_{n \to \infty}x_n

limnxn

129\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx

13e3/xx2dx

130\int_{1}^{3}\frac{e^3/x}{x^2}\, dx

13e3/xx2dx

131\textstyle \int\limits_{-N}^{N} e^x dx

NNexdx

132\textstyle \int_{-N}^{N} e^x dx

NNexdx

133\iint\limits_D dx\,dy

Ddxdy

134\iiint\limits_E dx\,dy\,dz

Edxdydz

135\iiiint\limits_F dx\,dy\,dz\,dt

Fdxdydzdt

136\int_{(x,y)\in C} x^3\, dx + 4y^2\, dy

(x,y)Cx3dx+4y2dy

137\oint_{(x,y)\in C} x^3\, dx + 4y^2\, dy

(x,y)Cx3dx+4y2dy

138\bigcap_{i=1}^n E_i

i=1nEi

139\bigcup_{i=1}^n E_i

i=1nEi

Fractions, matrices, multiline
140\frac{2}{4}=0.5 or {2 \over 4}=0.524=0.5 or 24=0.5
141\tfrac{2}{4} = 0.5

24=0.5

142\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c +
\dfrac{2}{d + \dfrac{2}{4}}} = a
24=0.52c+2d+24=a
143\cfrac{2}{c +\cfrac{2}{d +\cfrac{2}{4}}} = a

2c+2d+24=a

144\cfrac{x}{1 + \cfrac{\cancel{y}}
{\cancel{y}}} = \cfrac{x}{2}
x1+yy=x2
145\binom{n}{k}(nk)
146\tbinom{n}{k}

(nk)

147\dbinom{n}{k}(nk)
148\begin{matrix}
x & y \\
z & v
\end{matrix}
xyzv
149\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}
|xyzv|
150\begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix}
xyzv
151\begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{bmatrix}
[0000]
152\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}
{xyzv}
153\begin{pmatrix}
x & y \\
z & v
\end{pmatrix}
(xyzv)
154\bigl( \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr)
(abcd)
155f(n) = \begin{cases}
n/2, & \text{if }n\text{ is even} \\
3n+1, & \text{if }n\text{ is odd} \end{cases}
f(n)={n/2,if n is even3n+1,if n is odd
156\begin{cases}
3x + 5y + z \\
7x - 2y + 4z \\
-6x + 3y + 2z \end{cases}
{3x+5y+z7x2y+4z6x+3y+2z
157\begin{align}
f(x) & = (a+b)^2 \\
& = a^2+2ab+b^2 \\
\end{align}

f(x)=(a+b)2=a2+2ab+b2

158\begin{alignat}{2}
f(x) & = (a+b)^2 \\
& = a^2+2ab+b^2 \\
\end{alignat}

f(x)=(a+b)2=a2+2ab+b2

159\begin{align}
f(a,b) & = (a+b)^2 && = (a+b)(a+b) \\
& = a^2+ab+ba+b^2 && = a^2+2ab+b^2 \\
\end{align}

f(a,b)=(a+b)2=(a+b)(a+b)=a2+ab+ba+b2=a2+2ab+b2

159\begin{alignat}{3}
f(a,b) & = (a+b)^2 && = (a+b)(a+b) \\
& = a^2+ab+ba+b^2 && = a^2+2ab+b^2 \\
\end{alignat}

f(a,b)=(a+b)2=(a+b)(a+b)=a2+ab+ba+b2=a2+2ab+b2

160\begin{array}{lcl}
z & = & a \\
f(x,y,z) & = & x + y + z \end{array}

z=af(x,y,z)=x+y+z

161\begin{array}{lcr}
z & = & a \\
f(x,y,z) & = & x + y + z \end{array}

z=af(x,y,z)=x+y+z

162\begin{alignat}{4}
F:\; && C(X) && \;\to\; & C(X) \\
&& g && \;\mapsto\; & g^2 \end{alignat}

F:C(X)C(X)gg2

163\begin{alignat}{4}
F:\; && C(X) && \;\to\; && C(X) \\
&& g && \;\mapsto\; && g^2 \end{alignat}

F:C(X)C(X)gg2

164f(x) \,\! =\sum_{n=0}^\infty a_n x^n
= a_0+a_1x+a_2x^2+\cdots
f(x) =n=0anxn =a0+a1x+a2x2+
165\begin{array}{|c|c|c|}
a & b & S \\
\hline
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
abS001011101110
Delimiters
166( \frac{1}{2} )^n(12)n
167\left ( \frac{1}{2} \right )^n(12)n
168\left ( \frac{a}{b} \right )(ab)
169\left [ \frac{a}{b} \right ] \quad
\left \lbrack \frac{a}{b} \right \rbrack
[ab][ab]
170\left { \frac{a}{b} \right } \quad
\left \lbrace \frac{a}{b} \right \rbrace
{ab}{ab}
171\left \langle \frac{a}{b} \right \rangleab
172\left | \frac{a}{b} \right \vert \quad
\left \Vert \frac{c}{d} \right |
|ab|cd
173\left \lfloor \frac{a}{b} \right \rfloor
\quad \left \lceil \frac{c}{d} \right \rceil
abcd
174\left / \frac{a}{b} \right \backslashab
175\left\uparrow\frac{a}{b}\right\downarrow\;
\left\Uparrow\frac{a}{b}\right\Downarrow\;
\left \updownarrow \frac{a}{b} \right
\Updownarrow
ababab
176\left [ 0,1 \right )
\left \langle \psi \right |
[0,1)ψ|
177\left . \frac{A}{B} \right } \to XAB}X
178( \bigl( \Bigl( \biggl( \Biggl( \dots
\Biggr] \biggr] \Bigr] \bigr] ]
(((((]]]]]
179{ \bigl{ \Bigl{ \biggl{ \Biggl{ \dots
\Biggr\rangle \biggr\rangle \Bigr\rangle
\bigr\rangle \rangle
{{{{{
180| \big| \Big| \bigg| \Bigg| \dots
\Bigg| \bigg| \Big| \big| |
|||||
181\lfloor \bigl\lfloor \Bigl\lfloor
\biggl\lfloor \Biggl\lfloor \dots
\Biggr\rceil \biggr\rceil \Bigr\rceil
\bigr\rceil \rceil
182\uparrow \big\uparrow \Big\uparrow
\bigg\uparrow \Bigg\uparrow \dots
\Bigg\Downarrow \bigg\Downarrow
\Big\Downarrow \big\Downarrow \Downarrow
183\updownarrow\big\updownarrow\Big\updownarrow
\bigg\updownarrow \Bigg\updownarrow \dots
\Bigg\Updownarrow \bigg\Updownarrow \Big
\Updownarrow \big\Updownarrow \Updownarrow
184/ \big/ \Big/ \bigg/ \Bigg/ \dots
\Bigg\backslash \bigg\backslash \Big
\backslash \big\backslash \backslash
/\
Greek Alphabet
185\Alpha \Beta \Gamma \Delta \Epsilon \Zeta
\Eta \Theta
ΑΒΓΔΕΖΗΘ
186\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \PiΙΚΛΜΝΞΟΠ
187\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi
\Omega
ΡΣΤΥΦΧΨΩ
188\alpha \beta \gamma \delta \epsilon \zeta
\eta \theta
αβγδϵζηθ
189\iota \kappa \lambda \mu \nu \xi \omicron \piικλμνξοπ
190\rho \sigma \tau \upsilon \phi \chi \psi
\omega
ρστυϕχψω
191\varGamma \varDelta \varTheta \varLambda
\varXi \varPi \varSigma \varPhi \varUpsilon
\varOmega
𝛤𝛥𝛩𝛬𝛯𝛱𝛴𝛷𝛶𝛺
192\varepsilon \digamma \varkappa \varpi
\varrho \varsigma \vartheta \varphi
εϝϰϖϱςϑφ
Hebrew symbols
193\aleph \beth \gimel \daleth
Blackboard bold
194\mathbb{ABCDEFGHI}
\mathbb{JKLMNOPQR}
\mathbb{STUVWXYZ}
𝔸𝔹𝔻𝔼𝔽𝔾𝕀𝕁𝕂𝕃𝕄𝕆𝕊𝕋𝕌𝕍𝕎𝕏𝕐
Boldface
195\mathbf{ABCDEFGHI}
\mathbf{JKLMNOPQR}
\mathbf{STUVWXYZ}
\mathbf{abcdefghijklm}
\mathbf{nopqrstuvwxyz}
\mathbf{0123456789}
𝐀𝐁𝐂𝐃𝐄𝐅𝐆𝐇𝐈𝐉𝐊𝐋𝐌𝐍𝐎𝐏𝐐𝐑𝐒𝐓𝐔𝐕𝐖𝐗𝐘𝐙𝐚𝐛𝐜𝐝𝐞𝐟𝐠𝐡𝐢𝐣𝐤𝐥𝐦𝐧𝐨𝐩𝐪𝐫𝐬𝐭𝐮𝐯𝐰𝐱𝐲𝐳𝟎𝟏𝟐𝟑𝟒𝟓𝟔𝟕𝟖𝟗
Boldface Greek
196\boldsymbol{\Alpha \Beta \Gamma \Delta
\Epsilon \Zeta \Eta \Theta}
𝚨𝚩𝚪𝚫𝚬𝚭𝚮𝚯
197\boldsymbol{\Iota \Kappa \Lambda \Mu \Nu \Xi
\Omicron \Pi}
𝚰𝚱𝚲𝚳𝚴𝚵𝚶𝚷
198\boldsymbol{\Rho \Sigma \Tau \Upsilon \Phi
\Chi \Psi \Omega}
𝚸𝚺𝚻𝚼𝚽𝚾𝚿𝛀
199\boldsymbol{\alpha \beta \gamma \delta
\epsilon \zeta \eta \theta}
𝜶𝜷𝜸𝜹𝝐𝜻𝜼𝜽
200\boldsymbol{\iota \kappa \lambda \mu \nu \xi
\omicron \pi}
𝜾𝜿𝝀𝝁𝝂𝝃𝝄𝝅
201\boldsymbol{\rho \sigma \tau \upsilon \phi
\chi \psi \omega}
𝝆𝝈𝝉𝝊𝝓𝝌𝝍𝝎
202\boldsymbol{\varepsilon\digamma\varkappa
\varpi}
𝜺ϝ𝝒𝝕
203\boldsymbol{\varrho\varsigma\vartheta\varphi}𝝔𝝇𝝑𝝋
Italics
204\mathit{0123456789}0123456789
Greek Italics
205\mathit{\Alpha \Beta \Gamma \Delta \Epsilon
\Zeta \Eta \Theta}
ΑΒΓΔΕΖΗΘ
206\mathit{\Iota \Kappa \Lambda \Mu \Nu \Xi
\Omicron \Pi}
ΙΚΛΜΝΞΟΠ
207\mathit{\Rho \Sigma \Tau \Upsilon \Phi \Chi
\Psi \Omega}
ΡΣΤΥΦΧΨΩ
Greek uppercase boldface italics
208\boldsymbol{\varGamma \varDelta \varTheta
\varLambda}
𝜞𝜟𝜣𝜦
209\boldsymbol{\varXi \varPi \varSigma
\varUpsilon \varOmega}
𝜩𝜫𝜮𝜰𝜴
Roman typeface
210\mathrm{ABCDEFGHI}
\mathrm{JKLMNOPQR}
\mathrm{STUVWXYZ}
\mathrm{abcdefghijklm}
\mathrm{nopqrstuvwxyz}
\mathrm{0123456789}
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
Sans serif
211\mathsf{ABCDEFGHI}
\mathsf{JKLMNOPQR}
\mathsf{STUVWXYZ}
\mathsf{abcdefghijklm}
\mathsf{nopqrstuvwxyz}
\mathsf{0123456789}
𝖠𝖡𝖢𝖣𝖤𝖥𝖦𝖧𝖨𝖩𝖪𝖫𝖬𝖭𝖮𝖯𝖰𝖱𝖲𝖳𝖴𝖵𝖶𝖷𝖸𝖹𝖺𝖻𝖼𝖽𝖾𝖿𝗀𝗁𝗂𝗃𝗄𝗅𝗆𝗇𝗈𝗉𝗊𝗋𝗌𝗍𝗎𝗏𝗐𝗑𝗒𝗓𝟢𝟣𝟤𝟥𝟦𝟧𝟨𝟩𝟪𝟫
Sans serif Greek
212\mathsf{\Alpha \Beta \Gamma \Delta \Epsilon
\Zeta \Eta \Theta}
𝝖𝝗𝝘𝝙𝝚𝝛𝝜𝝝
213\mathsf{\Iota \Kappa \Lambda \Mu \Nu \Xi
\Omicron \Pi}
𝝞𝝟𝝠𝝡𝝢𝝣𝝤𝝥
214\mathsf{\Rho \Sigma \Tau \Upsilon \Phi \Chi
\Psi \Omega}
𝝦𝝨𝝩𝝪𝝫𝝬𝝭𝝮

Unicode has special code points for bold Greek sans-serif, but no code points for
regular-weight Greek sans-serif. I know of no servable math font that has glyphs
for regular-weight Greek sans-serif. Consequently, these bold Greek sans-serif
glyphs are the best approximation I can make to sans-serif Greek.


Calligraphy
215\mathcal{ABCDEFGHI}
\mathcal{JKLMNOPQR}
\mathcal{STUVWXYZ}
\mathcal{abcdefghi}
\mathcal{jklmnopqr}
\mathcal{stuvwxyz}
𝒜𝒞𝒟𝒢𝒥𝒦𝒩𝒪𝒫𝒬𝒮𝒯𝒰𝒱𝒲𝒳𝒴𝒵𝒶𝒷𝒸𝒹𝒻𝒽𝒾𝒿𝓀𝓁𝓂𝓃𝓅𝓆𝓇𝓈𝓉𝓊𝓋𝓌𝓍𝓎𝓏
Fraktur
216\mathfrak{ABCDEFGHI}
\mathfrak{JKLMNOPQR}
\mathfrak{STUVWXYZ}
\mathfrak{abcdefghi}
\mathfrak{jklmnopqr}
\mathfrak{stuvwxyz}
𝔄𝔅𝔇𝔈𝔉𝔊𝔍𝔎𝔏𝔐𝔑𝔒𝔓𝔔𝔖𝔗𝔘𝔙𝔚𝔛𝔜𝔞𝔟𝔠𝔡𝔢𝔣𝔤𝔥𝔦𝔧𝔨𝔩𝔪𝔫𝔬𝔭𝔮𝔯𝔰𝔱𝔲𝔳𝔴𝔵𝔶𝔷
Scriptstyle text
217{\scriptstyle\text{abcdefghijklm}}abcdefghijklm
Mixed text faces
218x y zxyz
219\text{x y z}x y z
220\text{if} n \text{is even}ifnis even
221\text{if }n\text{ is even}if n is even
222\text{if}~n\ \text{is even}if n is even
Color
223{\color{Blue}x^2}+{\color{Orange}2x}-
{\color{LimeGreen}1}
x2+2x1
224x_{1,2}=\frac{{\color{Blue}-b}\pm
\sqrt{\color{Red}b^2-4ac}}{\color{Green}2a }
x1,2=b±b24ac2a
225{\color{Blue}x^2}+{\color{Orange}2x}-
{\color{LimeGreen}1}
x2+2x1
226\color{Blue}x^2\color{Black}+\color{Orange}
2x\color{Black}-\color{LimeGreen}1
x2+2x1
227\color{Blue}{x^2}+\color{Orange}{2x}-
\color{LimeGreen}{1}
x2+2x1
228\definecolor{myorange}{rgb}{1,0.65,0.4}
\color{myorange}e^{i \pi}\color{Black} + 1= 0
eiπ+1=0

For color names, see the color section in the Temml function support page.


Spacing
229a \qquad b
a \quad b
a\ b
a \text{ } b
a\;b
a\,b
ab
a b
\mathit{ab}
a\!b
ababa ba babababababab
230| \uparrow \rangle|
231\left| \uparrow \right\rangle|
232| {\uparrow} \rangle|
233| \mathord\uparrow \rangle|
Temml replacements for wiki workarounds
234\oiint\limits_D dx\,dy
\oiiint\limits_E dx\,dy\,dz

Ddxdy

Edxdydz

234\wideparen{AB}AB
235\dddot{x}x
236\operatorname*{median}_
{j\,\ne\,i} X_{i,j}

medianjiXi,j

237\sout{q}q
238\mathrlap{\,/}{=}/=
239\text{\textsf{textual description}}𝗍𝖾𝗑𝗍𝗎𝖺𝗅 𝖽𝖾𝗌𝖼𝗋𝗂𝗉𝗍𝗂𝗈𝗇
240α παπ

mhchem examples are displayed on their own test page.


Examples of implemented TeX formulas
241ax^2 + bx + c = 0ax2+bx+c=0
242x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}x=b±b24ac2a
243\left( \frac{\left(3-x\right)
\times 2}{3-x} \right)
((3x)×23x)
244S_{\text{new}} = S_{\text{old}} -
\frac{ \left( 5-T \right) ^2} {2}

Snew=Sold(5T)22

245\int_a^x \int_a^s f(y)\,dy\,ds =
\int_a^x f(y)(x-y)\,dy

axasf(y)dyds=axf(y)(xy)dy

246\int_e^{\infty}\frac {1}{t(\ln t)^2}dt =
\left. \frac{-1}{\ln t}\right\vert_e^\infty
= 1

e1t(lnt)2dt=1lnt|e=1

247\det(\mathsf{A}-\lambda\mathsf{I}) = 0det(𝖠λ𝖨)=0
248\sum_{i=0}^{n-1} i

i=0n1i

249\sum_{m=1}^\infty\sum_{n=1}^\infty
\frac{m^2 n}{3^m\left(m 3^n + n 3^m\right)}

m=1n=1m2n3m(m3n+n3m)

250u'' + p(x)u' + q(x)u=f(x),\quad x>au+p(x)u+q(x)u=f(x),x>a
251|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n,
\arg(z^n) = n \arg(z)
|z|=|z|,|(z)n|=|z|n,arg(zn)=narg(z)
252\lim_{z\to z_0} f(z)=f(z_0)

limzz0f(z)=f(z0)

253\phi_n(\kappa) =
\frac{1}{4\pi^2\kappa^2} \int_0^\infty
\frac{\sin(\kappa R)}{\kappa R}
\frac{\partial}{\partial R}
\left [ R^2\frac{\partial D_n(R)}
{\partial R} \right ] \,dR

ϕn(κ)=14π2κ20sin(κR)κRR[R2Dn(R)R]dR

254\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},
\quad\frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}
ϕn(κ)=0.033Cn2κ11/3,1L0κ1l0
255f(x) = \begin{cases}
1 & -1 \le x < 0 \\
\frac{1}{2} & x = 0 \\
1 - x^2 & \text{otherwise}
\end{cases}
f(x)={11x<012x=01x2otherwise
256{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z)
= \sum_{n=0}^\infty
\frac{(a1)_n\cdots(ap)_n}
{(c_1)_n\cdots(c_q)_n}\frac{z^n}{n!}
pFq(a1,,ap;c1,,cq;z)=n=0(a1)n(ap)n(c1)n(cq)nznn!
258\frac{a}{b}\ \tfrac{a}{b}

ab ab

259S=dD\sin\alphaS=dDsinα
260V = \frac{1}{6} \pi h \left [ 3 \left
( r1^2 + r2^2 \right ) + h^2 \right ]
V=16πh[3(r12+r22)+h2]
261\begin{align}
u & = \tfrac{1}{\sqrt{2}}(x+y) \qquad &
x &= \tfrac{1}{\sqrt{2}}(u+v) \\[0.6ex]
v & = \tfrac{1}{\sqrt{2}}(x-y) \qquad &
y &= \tfrac{1}{\sqrt{2}}(u-v)
\end{align}

u=12(x+y)x=12(u+v)v=12(xy)y=12(uv)

That concludes the tests from Wikipedia. Now a few more tests.


Linear Logic
262A \with B \parr CA&BC
263a \coh \oc b \incoh \wn c \scoh d \sincoh ea!b?cde
264a \Perp \shpos b \multimapinv \shneg cabc
Nested font size
265\mathrm{f{\large f{\normalsize f{\tiny f}}}}ffff

The next line tests the length of an extensible arrow. Since Firefox does not
support the minsize attribute, Temml has a workaround. The middle arrow
should be as long at the bar between C & D.

266A \rightarrow B \xrightarrow{i} C
\rule[0.3em]{1.75em}{0.05em} D
ABiCD