Mozilla Torture Test

This page reproduces the tests from
https://www-archive.mozilla.org/projects/mathml/demo/texvsmml.xhtml and
https://fred-wang.github.io/MathFonts/mozilla_mathml_test/

Images from LaTeX are also included for comparison.


Source Temml LaTeX Comment
1x^2y^2

x2y2

ex1TeXbook p128
2_2F_3

2F3

ex2TeXbook p128
3x+y^2\over k+1

x+y2k+1

ex3TeXbook p139
4x+y^{2\over k+1}

x+y2k+1

ex4TeXbook p139
5a\over{b/2}

ab/2

ex5TeXbook p139
6a_0 + \cfrac{1}{a_1 +
\cfrac{1}{a_2 +
\cfrac{1}{a_3 +
\cfrac{1}{a_4}}}}

a0+1a1+1a2+1a3+1a4

ex6TeXbook p142
7a_0+{1\over a_1+{1\over
a_2+{1\over a_3+
{1\over a_4}}}}

a0+1a1+1a2+1a3+1a4

ex7TeXbook p142
8n\choose {k / 2}

(nk/2)

ex8TeXbook p143
9

{p \choose 2} x^2 y^{p-2}

  • {1\over{1-x}}
    {1\over{1-x^2}}

(p2)x2yp211x11x2

ex9TeXbook p143
10\sum_{\scriptstyle 0 \le
i \le m \atop \scriptstyle
0 < j < n} P(i, j)

0im0<j<nP(i,j)

ex10TeXbook p145
11x^{2y}

x2y

ex11TeXbook p128
12\sum_{i=1}^p
\sum_{j=1}^q
\sum_{k=1}^r
a_{ij}b_{jk}c_{ki}

i=1pj=1qk=1raijbjkcki

ex12TeXbook p145
13\sqrt{1+\sqrt{1+\sqrt{1+
\sqrt{1+\sqrt{1+\sqrt{1+
\sqrt{1+x}}}}}}}

1+1+1+1+1+1+1+x

ex13TeXbook p145
14\bigg(\frac{\partial^2}
{\partial x^2} + \frac
{\partial^2}{\partial y^2}
\bigg){\big\lvert\varphi
(x+iy)\big\rvert}^2

(2x2+2y2)|φ(x+iy)|2

ex14TeXbook p147
152^{2^{2^x}}

222x

ex15TeXbook p128
16\int_1^x {dt\over t}

1xdtt

ex16TeXbook p168
17\int\!\!\!\int_D dx,dy

Ddxdy

ex17TeXbook p169
18f(x) = \begin{cases}1/3 &
\text{if }0 \le x \le 1;
\\
2/3 & \text{if }3\le x \le
4;\\ 0 &\text{elsewhere.}
\end{cases}

f(x)={1/3if 0x1;2/3if 3x4;0elsewhere.

ex18TeXbook p175
19\overbrace{x +\cdots + x}
^{k \text{ times}}

x++xk times

ex19TeXbook p176
20y_{x^2}

yx2

ex20TeXbook p128
21\sum_{p\text{ prime}}
f(p)=\int_{t>1} f(t)d\pi(t)

p primef(p)=t>1f(t)dπ(t)

ex21TeXbook p181
22{\underbrace{\overbrace{
\mathstrut a,\dots,a}^{k
,a\rq\text{s}},\overbrace{
\mathstrut b,\dots,b}^{l,
b\rq\text{s}}}_{k+l
\text{ elements}}}

{(a,,akas,(b,,blbsk+l elements}

ex22TeXbook p181
23\begin{pmatrix}
\begin{pmatrix}a&b\\c&d
\end{pmatrix} &
\begin{pmatrix}e&f\\g&h
\end{pmatrix} \\ 0 &
\begin{pmatrix}i&j\\k&l
\end{pmatrix}
\end{pmatrix}

((abcd)(efgh)0(ijkl))

ex23TeXbook p181
24\det\begin{vmatrix}
c_0&c_1&c_2&\dots& c_n\\
c_1 & c_2 & c_3 & \dots &
c_{n+1}\\ c_2 & c_3 & c_4
&\dots & c_{n+2}\\ \vdots
&\vdots&\vdots & &\vdots
\\c_n & c_{n+1} & c_{n+2}
&\dots&c_{2n}
\end{vmatrix} > 0

det|c0c1c2cnc1c2c3cn+1c2c3c4cn+2cncn+1cn+2c2n|>0

ex24TeXbook p181
25y_{x_2}

yx2

ex25TeXbook p128
26x_{92}^{31415} + \pi

x9231415+π

ex26TeXbook p129
27x_{y^a_b}^{z^c_d}

xybazdc

ex27TeXbook p129
28y_3'''

y3

ex28TeXbook p130
29\lim_{n\rightarrow+\infty}
{\sqrt{2\pi n}\over n!}
\genfrac (){}{}n{e}^n = 1

limn+2πnn!(ne)n=1

ex29

30\det(A) = \sum_{\sigma
\in S_n} \epsilon(\sigma)
\prod_{i=1}^n
a_{i, \sigma_i}

det(A)=σSnϵ(σ)i=1nai,σi

ex30